Natural image sequences constrain dynamic receptive fields and imply a sparse code

نویسندگان

  • Chris Häusler
  • Alex Susemihl
  • Martin P. Nawrot
چکیده

In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emergence of Movement Sensitive Neurons' Properties by Learning a Sparse Code for Natural Moving Images

Olshausen & Field demonstrated that a learning algorithm that attempts to generate a sparse code for natural scenes develops a complete family of localised, oriented, bandpass receptive fields, similar to those of ‘simple cells’ in V1. This paper describes an algorithm which finds a sparse code for sequences of images that preserves information about the input. This algorithm when trained on na...

متن کامل

Temporal Coherence, Natural Image Sequences, and the Visual Cortex

We show that two important properties of the primary visual cortex emerge when the principle of temporal coherence is applied to natural image sequences. The properties are simple-cell-like receptive fields and complex-cell-like pooling of simple cell outputs, which emerge when we apply two different approaches to temporal coherence. In the first approach we extract receptive fields whose outpu...

متن کامل

Simple-Cell-Like Receptive Fields Maximize Temporal Coherence in Natural Video

Recently, statistical models of natural images have shown the emergence of several properties of the visual cortex. Most models have considered the nongaussian properties of static image patches, leading to sparse coding or independent component analysis. Here we consider the basic time dependencies of image sequences instead of their nongaussianity. We show that simple-cell-type receptive fiel...

متن کامل

Sparse Coding Models Can Exhibit Decreasing Sparseness while Learning Sparse Codes for Natural Images

The sparse coding hypothesis has enjoyed much success in predicting response properties of simple cells in primary visual cortex (V1) based solely on the statistics of natural scenes. In typical sparse coding models, model neuron activities and receptive fields are optimized to accurately represent input stimuli using the least amount of neural activity. As these networks develop to represent a...

متن کامل

Sparse coding and decorrelation in primary visual cortex during natural vision.

Theoretical studies suggest that primary visual cortex (area V1) uses a sparse code to efficiently represent natural scenes. This issue was investigated by recording from V1 neurons in awake behaving macaques during both free viewing of natural scenes and conditions simulating natural vision. Stimulation of the nonclassical receptive field increases the selectivity and sparseness of individual ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain Research

دوره 1536  شماره 

صفحات  -

تاریخ انتشار 2013